Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Multimedia Tools and Applications ; : 1-15, 2023.
Article in English | EuropePMC | ID: covidwho-2248129

ABSTRACT

Since 2019, COVID-19 disease caused significant damage and it has become a serious health issue in the worldwide. The number of infected and confirmed cases is increasing day by day. Different hospitals and countries around the world to this day are not equipped enough to treat these cases and stop this pandemic evolution. Lung and chest X-ray images (e.g., radiography images) and chest CT images are the most effective imaging techniques to analyze and diagnose the COVID-19 related problems. Deep learning-based techniques have recently shown good performance in computer vision and healthcare fields. We propose developing a new deep learning-based application for COVID-19 segmentation and analysis in this work. The proposed system is developed based on the context aggregation neural network. This network consists of three main modules: the context fuse model (CFM), attention mix module (AMM) and a residual convolutional module (RCM). The developed system can detect two main COVID-19-related regions: ground glass opacity and consolidation area in CT images. Generally, these lesions are often related to common pneumonia and COVID 19 cases. Training and testing experiments have been conducted using the COVID-x-CT dataset. Based on the obtained results, the developed system demonstrated better and more competitive results compared to state-of-the-art performances. The numerical findings demonstrate the effectiveness of the proposed work by outperforming other works in terms of accuracy by a factor of over 96.23%.

2.
Multimed Tools Appl ; : 1-15, 2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2248130

ABSTRACT

Since 2019, COVID-19 disease caused significant damage and it has become a serious health issue in the worldwide. The number of infected and confirmed cases is increasing day by day. Different hospitals and countries around the world to this day are not equipped enough to treat these cases and stop this pandemic evolution. Lung and chest X-ray images (e.g., radiography images) and chest CT images are the most effective imaging techniques to analyze and diagnose the COVID-19 related problems. Deep learning-based techniques have recently shown good performance in computer vision and healthcare fields. We propose developing a new deep learning-based application for COVID-19 segmentation and analysis in this work. The proposed system is developed based on the context aggregation neural network. This network consists of three main modules: the context fuse model (CFM), attention mix module (AMM) and a residual convolutional module (RCM). The developed system can detect two main COVID-19-related regions: ground glass opacity and consolidation area in CT images. Generally, these lesions are often related to common pneumonia and COVID 19 cases. Training and testing experiments have been conducted using the COVID-x-CT dataset. Based on the obtained results, the developed system demonstrated better and more competitive results compared to state-of-the-art performances. The numerical findings demonstrate the effectiveness of the proposed work by outperforming other works in terms of accuracy by a factor of over 96.23%.

3.
Healthcare (Basel) ; 11(3)2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2242445

ABSTRACT

Recently, researchers have turned their focus to predicting the age of people since numerous applications depend on facial recognition approaches. In the medical field, Alzheimer's disease mainly depends on patients' ages. Multiple methods have been implemented and developed to predict age. However, these approaches lack accuracy because every image has unique features, such as shape, pose, and scale. In Saudi Arabia, Vision 2030, concerning the quality of life, is one of the twelve initiatives that were launched recently. The health sector has gained increasing attention as the government has introduced age-based policies to improve the health of its elderly residents. These residents are urgently advised to vaccinate against COVID-19 based on their age. In this paper, proposing a practical, consistent, and trustworthy method to predict age is presented. This method uses the color intensity of eyes and a Convolutional Neural Network (CNN) to predict age in real time based on the ensemble of CNN. A segmentation algorithm is engaged since the approach takes its input from a video stream or an image. This algorithm extracts data from one of the essential parts of the face: the eyes. This part is also informative. Several experiments have been conducted on MATLAB to verify and validate results and relative errors. A Kaggle website dataset is utilized for ages 4 to 59. This dataset includes over 270,000 images, and its size is roughly 2 GB. Consequently, the proposed approach produces ±8.69 years of Mean Square Error (MSE) for the predicted ages. Lastly, a comparative evaluation of relevant studies and the presented algorithm in terms of accuracy, MSE, and Mean Absolute Error (MAE) is also provided. This evaluation shows that the approach developed in the current study outperforms all considered performance metrics since its accuracy is 97.29%. This study found that the color intensity of eyes is highly effective in predicting age, given the high accuracy and acceptable MSE and MAE results. This indicates that it is helpful to utilize this methodology in real-life applications.

4.
Healthcare (Basel) ; 11(3)2023 Jan 22.
Article in English | MEDLINE | ID: covidwho-2238624

ABSTRACT

ECG provides critical information in a waveform about the heart's condition. This information is crucial to physicians as it is the first thing to be performed by cardiologists. When COVID-19 spread globally and became a pandemic, the government of Saudi Arabia placed various restrictions and guidelines to protect and save citizens and residents. One of these restrictions was preventing individuals from touching any surface in public and private places. In addition, the authorities placed a mandatory rule in all public facilities and the private sector to evaluate the temperature of individuals before entering. Thus, the idea of this study stems from the need to have a touchless technique to determine heartbeat rate. This article proposes a viable and dependable method to estimate an average heartbeat rate based on the reflected light on the skin. This model uses various deep learning tools, including AlexNet, Convolutional Neural Networks (CNNs), Long Short-Term Memory Networks (LSTMs), and ResNet50V2. Three scenarios have been conducted to evaluate and validate the presented model. In addition, the proposed approach takes its inputs from video streams and converts these streams into frames and images. Numerous trials have been conducted on volunteers to validate the method and assess its outputs in terms of accuracy, mean absolute error (MAE), and mean squared error (MSE). The proposed model achieves an average 99.78% accuracy, MAE is 0.142 when combing LSTMs and ResNet50V2, while MSE is 1.82. Moreover, a comparative measurement between the presented algorithm and some studies from the literature based on utilized methods, MAE, and MSE are performed. The achieved outcomes reveal that the developed technique surpasses other methods. Moreover, the findings show that this algorithm can be applied in healthcare facilities and aid physicians.

SELECTION OF CITATIONS
SEARCH DETAIL